ªÅ¶¡¥±¤èµ{¦¡»Pµ¥±¿n§ë¼v
(ªÅ¶¡¥±¬ã¨s¨t¦C¤§¥|)
1.«e¨¥
¶Ç²Î¤§µ¥¨¤«×©Îµ¥±¿n§ë¼v¡A»Ý§Q¥Î¤wø»s§¹¦¨¤§§ë¼vºô¹Ï¡Aø¹Ï§@·~¤Î¸ê®Æ³B²z¤£¬Æ¤è«K¡A¤×¨ä¬O¦b³B²z¥±Â¶¶É±×¶b±ÛÂà§ë¼v§@·~®É¡A¬J¶O®É¶O¤O¡A¤]®e©ö¥X¿ù¡C¬°°t¦XP.C¹q¸£§@·~¡A¦]¦¹µ§ªÌ¦¦b1987(²{¥NÀç«Ø88~90´Á)´¿±À¾É¥Xµ¥¨¤«×¤Îµ¥±¿n§ë¼v¤§°ò¥»¤½¦¡¡A¬°ÅªªÌ´£¨Ñ¤@®M¬J§¹¾ã¤S²M´·¤§Æ[©À¡A¨Ã¯à¹ï¹Ï¸Ñªkµª®×¤§®Õ®Ö©Î¹ï©¥©Yéw°ÝÃD¤Îºc³y¦a½è¾Ç¤§¬ã¨s¡A¦³©Ò§U¯q¡C©Ò¿×©óµ¥±¿n§ë¼v(Equal area projection)¡A¥çºÙ¤§¬°¬I±K¯Sªk(Schimidt method)¡C
2.µ¥±¿n§ë¼v
°Ñ¦Ò²yÅé²yªí±¤W¨â±¿n¬Ûµ¥¥ô·N¹Ï¹³¡A¥Hµ¥±¿n§ë¼v¤è¦¡§ë¼v¦Ü¨ª¹D±«á¡A¨ä±¿n¤ñ§ë¼v«e«á«O«ù¬Ûµ¥¡A¦p¨ª¹D±¤§°ò¶ê¥b®|»P°Ñ¦Ò²yÅé¥b®|¬Ûµ¥®É¡A«h¨äµ¥±¿n§ë¼v«e«á±¿n¤ñÀ³ùÚ«O«ù2:1¤§©wÈ¡C®Ú¾Ú©w¸q¡G¬°¥ô·N¦V¶qOA=¡ex,y
,z
¡f¡A¦p¥HT
ÂI(°Ñ¦Ò²yÅé³Ì§CÂI¡A¹Ï2.1)¬°¶ê¤ß¡AT
A¬°¥b®|¡A¦V¤Uµe©·»P³q¹LT
¤§¤ô¥±¬Û¥æ©óÂIB¡A¹LA§@¹]««½u¥æ§ë¼v¤ô¥±©óA
ÂI¡A¦p¨úT
A¡¨=T
A/
®É¡A«hA¡¨§Y¬°OA¦b¤ô¥±¤§µ¥±¿n§ë¼vÂI¡C¨ú³q¹L²y¤ßO(0,0,0)¨Ã¥]§t¥ô·N¦V¶qOA¤§««ª½¥±¦p¹Ï2.1©Ò¥Ü¡C¹Ï¤¤³s±µAT[T¬°¤Ñ³»¡AT(0,0-1)]¡A¦]OA=¡ex
,y
,z
¡f¡AT
ÂI¤§®y¼Ð¬°(0,0,1)¡A°²³]BÂI¤§®y¼Ð¬°(
,
,1)¤ÎA¡¨ÂI¤§®y¼Ð¬°(x,y,1)¡AT
A=
T
B=
2sin(45¢X-
)¡A¥Ñ
¤ñ¨Ò¡BT
¡AA
¤ÎB¤TÂI¦@½u»Pµ¥±¿n§ë¼v©w¸q¥i±o¡G
¬Gx=¡Ó
(¤U¥b²y§ë¼v¡Az>0 ¨ú¥¿¸¹¡Az<0
¨út¸¹)¡K¡K (2.1.a)
©Îx=¡K¡K¡K(2.1.b)
y=¡Ó
(z>0 ¨ú¥¿¸¹¡Az<0
¨út¸¹¡K¡K(2.1.c)
©Îy=
¡K¡K¡K(2.1.d)
¦¡(2.1.a)¤Î(2.1.c)¬°¦³¥i°f©Ê¡A¥Ñ§ë¼v®y¼Ð¥i¤ÏºâìªÅ¶¡³æ¦ì¦V¶q®y¼Ð(x,y
,z
)¡G
x=x
¡K¡K¡K(2.1.e)
y=
y
¡K¡K¡K(2.1.f)
z=1-x
-y
¡K¡K¡K(2.1.g)
¹Ï2.1²yÅéµ¥±¿n§ë¼vÃö«Y¥Ü·N¹Ï
¦¡(3.1)¬°ªÅ¶¡¥ô·NÂIA(x,y
,z
)µ¥±¿n§ë¼v¦Ü¨ª¹D¥±A
(x,y,0)¤§°ò¥»Âà´«¤½¦¡¡C¦p¦Pµ¥¨¤«×¥ßÅé§ë¼v,¦]¬°OA¬°¤£³sÄò±¤W¤§¥ô·N¦V¶q(p¡Aq¬°ÅܼÆ)¡A¨ä»P¤£³sÄò±³æ¦ìªk½u¤¬¬Û««ª½¡A¥i±o
(ax+by)=-c(1-x²-y²)¡K¡K¡K¡K(2.2.a)
¡A¤Î
(2-x-y
)(ax+by)
=c
(1-x
-y
)
¡K¡K¡K¡K(2.2.b)
¦¡(2.2)¬°¨â¤¸¥|¦¸¤èµ{¦¡¡A·ía=b=0®É¡A¨ä¹Ï§Î¬°¶ê¡A·ía¡Úb®É¡A¨ä¹Ï§Î¬°¾ò¶ê§Î¡C¦¡(2.2)¤§¹Ï§Î(¹Ï2.2¨â¤¸¥|¦¸¦±½u)¤§¨D¸Ñ¤Îø»s¬Û·íÁc½Æ¡A»ÝÂǹq¸£pºâ¡C¬°¤è«KŪªÌ¡A§@ªÌ¤w±N¨ä¼¶¼g¦¨¹q¸£µ{¦¡¥H´î¤Öpºâ¤u§@¡A¨Ï¥Î¤W¬Û·í¤è«K¡C¤@¯ë¤U¥b²y¤§§ë¼v¥NªíSBS¤§¤G¤¸¥|¦¸¾ò¶ê§Î¦±½u¡A»P³q¹LS¡BB¤ÎS
¤TÂI¤§¶ê©·°¾Â÷¤£¤j¡A¦h¦b¥i±µ¨ü¤§½d³ò¤º¡A¦]¦¹¥i¥H³q¹LS¡BB¤ÎS
¤TÂI¤§¶ê©·¡A¥N´À¸Ó¤G¤¸¥|¦¸¾ò¶ê§Î¦±½u¡A«h¸Ó¥N´À¶ê©·¤§¶ê¤ß¦ì¸m(h¡Ak)¤Î¥b®|¬ù¬°
h=-¡K¡K¡K¡K(2.3.a)¡A
k=-¡K¡K¡K¡K(2.3.b)¡A
r=¡K¡K¡K¡K(2.3.c)¡A
§Y¥N´À¶ê¤§¤½¦¡¬° (x-h)²+(y-k)²=r²¡K¡K¡K¡K(2.4)
¹Ï2.2¥ô·N¥±µ¥±¿n¤j¶ê§ë¼v¥Ü·N¹Ï
»Pµ¥¨¤«×¤p¶ê§ë¼v²z½×¬Û¦ü¡Aµ¥±¿n§ë¼v¤p¶ê¤§§ë¼v¤½¦¡¬°¡G
(e
x+e
y)+e
(1-x
-y
)=cos
¡K¡K¡K(2.5)
3.µ¥±¿n§ë¼vºô¹qø»sì²z¤¶²Ð
¤£½×¬O³æ¦ì¦V¶q©Î¤j¤p¶êµ¥¨¤«×§ë¼v¹Ïø»s¡A³£¥i§Q¥Î§ë¼v°ò¥»¤½¦¡ª½±µ§@·~¡C°ß¦pµ¥¨¤«×§ë¼v¹Ïºô¡A©Îµ¥±¤j¤p¶ê§ë¼v¹Ï¤Î§ë¼v¹Ïºôø»s¡A©Îºc³y¦a½è¾Ç¡B©¥©Y¤uµ{¾Ç¦V¶q(¥±)±ÛÂ൥¤§¹Ï¸Ñªk§@·~¤¤¡A¦b¹L¥h¹q¸£¨Ã¤£´¶¹M¤§¦~¥N¡A¬O¬Û·í¶O®É¶O¤O¥B®e©ö¥X¿ù¡Aºë½T«×¥ç¤£°ª¡C¦¹Ãþ§ë¼v¹Ï¤§¹q¸£Ã¸»s¤u§@¡A¹L¥h³£¬O«D±`±M·~ªº¡A¤]«D±`¯«¯µ¡A¤×¨ä¬O¶¶É±×¶b±ÛÂàªÌ¡A§ó¬O¬Ã¶Qªº¤£±o¤F(¦n¹³¬OÄݱM½æ¡H)¡C¦p¹Ï3.1¤¤¤§¥ô·N¥±(¤p¶ê)¤èµ{¦¡¬°¡Gax+by+cz=d¡A(=1.0¡A
=1.0)¡A»P¤j¶ê(¤èµ{¦¡ax+by+cz=0)¡C¤µ¦p±ýø»s¤p¶ê¤§¹Ï¹³¤Î¨ä¹ïÀ³¤§µ¥¨¤«×(©Îµ¥±¿n)¤p¶ê¤§§ë¼vºô¹Ï®É¡C¦]¥ô·N¥±³æ¦ìªk½u¦V¶q=
[a,b,c]¬°¤wª¾¡A¥±¤W¥ô·N¦V¶q¬°
[x,y,z]=[cos(p)cos(q),sin(p)cos(q),sin(q)] ¡K¡K¡K¡K¡K¡K¡K(3.1)
¡A¦][a,b,c]¡E[x,y,z]=cos(£c)¡A¥i±o¡G acos(p)cos(q)+bsin(p)cos(q)+csin(q)=cos(£c)=d¡K¡K¡K¡K¡K¡K¡K(3.2)
¤½¦¡(3.2)¤¤cos(£c)¤wª¾¡A¦p¥Ol=acos(q)¡Am=bcos(q)¡An=cos
(£c)-csin(q) ¡A§Q¥Î¤T¨¤¨ç¼Æ¤½¦¡¡G=
¡A°²©wq=t¢X¡A¥i¨D¥X¹ïÀ³¤§pÈ¡C
¥N¤J¤½¦¡(4.2)¥i¨D¥X[x,y,z]¡AµM«á°²©wq=2t¢X¡Aq=3t¢X¡A¡K¡K¡K¡K¡K¡K¡K¡A¥i¨D¥X¦U¹ïÀ³¤§[x,y,z]¡C±N©Ò¦³¤§[x,y,z]¥N¤Jµ¥±¿n[¤½¦¡(3.2)]¤¤¡A¥i±o¹ïÀ³¤§§ë¼vÂI(x,
y
)¡A§Yx
=¡Ó
¡Ay
=¡Ó
(z>0¨ú¥¿¸¹¡Az>0¨út¸¹)
¥H¶ê·Æ¦±½u³s±µ¦U§ë¼vÂI«á¡A¹ïÀ³¤§¹Ï¥Ü§Y¬°©Ò¨D¡C
¹Ï3.1¥ô·N¥±»P³æ¦ì²yÅé¬Û¥æ¹Ï§Î¥Ü·N¹Ï
¤Wz¨D¸Ñ¥ç¥i§ï¥ý°²©wpµM«á¨Dq¡A¨ä¾l¨BÆJ»P°²©wq«á¨Dp¬Û¦ü¡C
«e±¨âºØ¨D(p,q)¡B[x,y,z]¤Î(x,
y
)¤èªk¦b¥±±µªñ¹]««®É(§Yªk½u±µªñ¤ô¥)¡A·|µo¥Í(p,q)¸Ñµª§xÃø©Î»~®t¬Æ¤j¤§±¡§Î¡C¬°¸Ñ¨M«ez¯Ê¾Ñ¡Aº¥ý¨D¥X¤@Ó(p,q)¤Î¹ïÀ³¤§[x,y,z]È«á¡A§Q¥Î¦V¶q¶¥ô·N¶b±ÛÂऽ¦¡¡A±N¦V¶qOp¶OT±ÛÂà
(5¢X©Î10¢X)¡A¨D¨ä±ÛÂà«á¤§[x
,y
,z
]¤Î(x
,
y
)¡A¨Ì¬Û¦Pµ{§Ç±ÛÂà2
¡A3
¡A¡K¡K¡K¡K¡An
=360¢X¡C³s±µ©Ò¦³¤§(x
,
y
)§Y¬°©Ò¨D¤§¤p¶ê§ë¼v¡C
Oq=[x,y
,z
]=(
Op¡Er)(1-cos
)r+cos
(
Op )+sin
(
Op¡Ñr)¡K¡K¡K(3.3)
¦Ü©ó¥]§tOp¤ÎTT¡¦¤§¤j¶ê¥±OTpT¡¦¡A¥ç¥i¥H¤ñ·Ó¤p¶ê§ë¼v¤è¦¡¡A¥HOp¬°°_ÂI±ÛÂà¤@©P¡A¨D¹ïÀ³¤§[x,y
,z
]¤Î(x
,
y
)¡A³s±µ©Ò¦³¤§(x
,
y
)§Y¬°©Ò¨D¤§¤j¶ê§ë¼v¡C¸Ñ¦X¥Gax+by+cz=d¡A
=1.0¡A
=1.0¤T¤èµ{¦¡¤§¥ô·NÂI®y¼Ð(x,y,z)VB¹q¸£µ{¦¡¡A±z¥i¤Wºô¯¸http://www.chday169.url.tw¤U¸üSub
OnePointOnUnitsphere)©ÎSub PointOnUnitsphereGiven1Variable()¡C
¹Ï3.2¬°2x+4y+2z=0¥±¤j¶êªº¥þy¸ñ§ë¼v¡F¹Ï3.3¬°2x+4y+2z=5¥±¤p¶êªº¥þy¸ñ§ë¼v(¬õ¦â)¡A¹Ï¤¤ÂŦ⬰°ò¶ê¡C
¹Ï3.2µ¥±¿n§ë¼v((2x+4y+2z=0) ¹Ï3.3µ¥±¿n§ë¼v((2x+4y+2z=5)
¹Ï3.4§Y¬°§Q¥Î«ez¤èªk§Q¥Î¹q¸£©Òø»s¤§µ¥±¿n§ë¼vºô(±ÛÂà¶b090/0.01)¡A¹Ï3.5¬°±ÛÂà¶b090/0.01µ¥±¿n§ë¼vºô¡A¹Ï3.6¬°±ÛÂà¶b080/30µ¥±¿n§ë¼vºô¡Cªí3.1¤Î3.2¬°§Q¥ÎExcel VBA pºâ¥±130/60¡A£r=90¤Î£r=50ªº¥±¤j¶ê¡B¤p¶ê±¿n§ë¼v(¥þy¸ñ¤U¥b²y§ë¼v)¤Î¥Ü¹Ï¡C
¹Ï3.5¹q¸£Ã¸»s¤§µ¥±¿n§ë¼vºô(±ÛÂà¶b000/0.01) ¹Ï3.6¹q¸£Ã¸»s¤§µ¥±¿n§ë¼vºô(±ÛÂà¶b080/30)
ªí3.1 130/60£r=90¥±¤j¶êµ¥±¿n§ë¼vExcel¸Õºâªí
ªí3.2 130/60£r=50¥±¤p¶êµ¥±¿n§ë¼vExcel¸Õºâªí
4.µ¥¨¤«×»Pµ¥±¿n§ë¼v¯S©Ê¤ñ¸û
¨Ì¾Úµ¥¨¤«×§ë¼vì²z¡A«h§ë¼v«á±¿n«o«O«ù©T©w¤ñ¨Ò¡A¦]¦¹¦b¦ìºAµ¥±K«×¹Ïø¹Ï§@·~¤W¡A¤ñµ¥¨¤«×§ë¼vÀu²§¡Cªí4.1¬°¨â¥±3D§¨¨¤»Pµ¥¨¤«×¡Bµ¥±¿n§ë¼v«á§¨¨¤ÅܤơC¹Ï4.1¬°µ¥¨¤«×¤Îµ¥±¿n§ë¼v«á§ë¼v¦±½u¶¡§¨¨¤ÅܤơF¹Ï5.2¬°¶êÀ@¨¤20¢X®É¼¯À¿À@¤§µ¥¨¤«×§ë¼v¤Îµ¥±¿n§ë¼vÅܤơCºî¦X«ez¦U³¹¸`¤§°Q½×«á¡A¥i±Nµ¥±¿n§ë¼v»Pµ¥¨¤«×§ë¼v¤§¬Û¦ü©Ê¤Î¬Û²§©ÊÂk¯Ç¦pªí5.3©Ò¥Ü¡Aªí5.3¤¤£\¡B£]¥Nªí¦V¶q¤§¶É¦V»P¥¿¶É¨¤¡A¥ô·N¦V¶q¤§¶É¦V¤Î¶É¨¤«h¥t¥Hp¡Bq¥Nªí¡CªÅ¶¡®y¼Ð(X,Y,Z)¸g§ë¼v«á¤§¥±®y¼Ð«h¥H(x¡By)ªí¥Ü¡A°ò¶ê¤§¥b®|§¡°²©w¬°1Ó³æ¦ìªø«×¡C
ªí4.1 ªÅ¶¡3D¤Î2D§¨¨¤ÅܤÆ
¥±1 |
¥±2 |
3D§¨¨¤(¢X) |
§ë¼vµ¥¨¤«×¹Ï¸Ñ§¨¨¤(¢X) |
§ë¼vµ¥±¿n¹Ï¸Ñ§¨¨¤(¢X) |
354/50 |
288/41 |
46.41 |
46.45 |
36.20 |
354/50 |
316/65 |
35.04 |
35.06 |
32.40 |
354/50 |
090/34 |
60.78 |
60.89 |
45.64 |
288/41 |
316/65 |
32.44 |
32.52 |
32.19 |
288/41 |
090/34 |
73.93 |
73.96 |
50.73 |
316/65 |
090/34 |
90.10 |
89.89 |
73.06 |
¹Ï5.1.aµ¥¨¤«×§ë¼v¥±§¨¨¤ ¹Ï5.1.bµ¥±¿n§ë¼v¥±§¨¨¤
¹Ï5.2.aµ¥¨¤«×§ë¼v¤p¶ê±¿nÅÜ¤Æ ¹Ï5.2.bµ¥±¿n§ë¼v¤p¶ê±¿nÅܤÆ
ªí5.2.a µ¥¨¤«×§ë¼v¤Îµ¥±¿n§ë¼v©Ê½è¤ñ¸û
¶µ¦¸ |
µ¥¨¤«×§ë¼v |
µ¥±¿n§ë¼v |
|
1 |
§ë¼v©Ê½è¤£ÅÜªÌ |
¨¤«× |
±¿n |
2 |
§ë¼v©Ê½è§ïÅÜªÌ |
±¿n |
¨¤«× |
3 |
§ë¼v«á¹Ï§Î |
¶ê |
¤G¤¸¥|¦¸¾ò¶ê¦±½u |
4 |
¦V¶q(½u)§ë¼v¹Ï§Î |
ÂI |
ÂI |
5 |
²yÅé¤j¶ê§ë¼v«á |
¤G¤¸¥|¦¸¾ò¶ê¦±½u |
|
6 |
²yÅé¤p¶ê§ë¼v«á |
¶ê |
¤G¤¸¥|¦¸¾ò¶ê¦±½u |
7 |
±±¨î¤èµ{¦¡ |
x
=¡ÓX/(1+
y
=¡ÓY/(1+ |
x
=¡ÓX/
y
=¡ÓY/ |
8 |
§ë¼v®y¼ÐìÂI¦Ü ¶É¦V§ë¼vÂI¶ZÂ÷ |
tan(45¢X- |
|
9 |
¨«¦V§ë¼v®y¼Ð¦Ü ·¥ÂI§ë¼vÂI¶ZÂ÷ |
tan( |
|
10 |
¨«¦V§ë¼v«á®y¼Ð |
x =cos(
y
=sin( |
x =cos(
y
=sin( |
11 |
¶É¦V§ë¼v«á®y¼Ð |
x=cos(£\)tan(45¢X-
y=sin(£\)tan(45¢X- |
x= y= |
12 |
·¥ÂI§ë¼v«á®y¼Ð (¤U¥b²y) |
x=-cos(£\)tan(
y=-sin(£\)tan( |
x=-
y=- |
13 |
¥ô·N¦V¶qp/q§ë ¼vÂI®y¼Ð |
x=cos(p)tan(45¢X-
y=sin(p)tan(45¢X- |
x=
y= |
14 |
¥±§ë¼v«á¦±½u ¤èµ{¦¡ |
(x- |
|
15 |
¤p¶ê§ë¼v¦±½u |
[x-
[y-
=[ |
|
ªí5.2.b µ¥¨¤«×§ë¼v¤Îµ¥±¿n§ë¼v©Ê½è¤ñ¸û
¶µ¦¸ |
©Ê½è |
¤½¦¡ |
1a |
µ¥¨¤«×¤j¶ê§ë¼v¨D¨â¦V¶q3D§¨¨¤ |
cos( |
1b
|
µ¥±¿n¤j¶ê§ë¼v¨D¨â¦V¶q3D§¨¨¤ |
cos( |
2a |
µ¥¨¤«×¤p¶ê§ë¼v¨D¨â¦V¶q3D§¨¨¤ |
sin(
|
2b |
µ¥±¿n¤p¶ê§ë¼v¨D¨â¦V¶q3D§¨¨¤ |
sin(
|
*
t=1+x
+y
¡Ft
=1+x
+y
¡A£c¬°¶êÀ@¨¤¤§¥b
¦p3D¦V¶q®y¼Ð¬°[(x,y
,z
),i=1,2]¡A¨ä¹ïÀ³¤§§ë¼v®y¼Ð¬°(x
,y
,0)¡A
«hªÅ¶¡¤¤¤§¥ô·N¨âÓ¦V¶q¤§§¨¨¤»Pµ¥±¿n2D¹Ï¤W¤§¶ê¤ß¨¤
¶¡¤§Ãö«Y¡Aªí5.2.b¤¤¨¤«×Ãö«Y¥ç¥i¥H¤U¦C¤½¦¡ªí¥Ü
cos=A
A
cos
+B
B
A=
B=1-x
-y
=z
(i=1~2)