Rock wedge failure by Excel

2019年03月24日

首頁

 

 

 

 

 

 

 

Wedge failure by Excel spreadsheet

 

    Limit equilibrium analysis of rock wedge failure by vector method and system equations method have been discussed “in Wedge failure of rock slope”, the algorithm by using Excel Spreadsheet discuss here is quite similar as the computer methods by vector method and system equations method. In this paper the definition of rock wedge geometry use the system equation method, also. The number of discontinuity plane in Excel spreadsheet method can be up to eight by default, The basic wedge is cut by plane 1(PL1) to PL4 ,PL5 to PL8 are tension crack planes. Every two tension crack plane can not overlapped, it means that every two tension crack planes do not having line intersection within basic wedge. The plunge of earth quake (EQ) can be assumed as horizontal or in the worst condition to get the minimum safety factor. The plunge of rock bolt can be assumed any direction or along the most economic plunge with the less bolt force.

 

[Example 1]:

A rock wedge cut by 4 discontinuities and a tension crack plane)

PL     1(left bottom) 2(right bottom) 3(Up.)  4(Low.)   5(tension crack)

Dip d.(°)      105        235      195     185      165

Dip(°)         45         70       12      65       70

c=0.5k/ft, c=1.0k/ft,=20,=30,=0.160k/ft,=0.0625k/ft

=100ft-=40ftcomputing(1) Fs of no ground water,(2)Fs with ground water,(3)f=FS of EQ without ground water(4)Fs of E=8000k.

The minimum safety factor in normal condition is 1.5while he minimum safety factor in during EQ is 1.3 (Hoek & Bray 1977).

 

[Sol]:

 

The number of discontinuity is 8 by default. If indplane =1 then represent this plane is existing, otherwise this plane is non- existing. The height of line 4(L4) is 100.00 ft, i.e Lzg_4=100.00. On tension crack plane 5, the length for point 6 to point 3 is 40.0ft(L(X-B)). If tension crack 5(PL5) is not existing, then the PT5, PT6, PT7 all shrink to PT1, if tension crack 6(PL6) is not existing, then the PT8, PT9, PT10 all shrink to PT2,…….

(1)  Data input

 

item

data name

description

1

?uww

Unit weight of water(t/m^3 or kip/ft^3)

2

?uwr

Unit weight of rock wedge

3

?cs1?~?cs2

Cohesion of plane 1 & plane 2

4

?ph1?~?ph2

friction angle of plane 1 & plane 2

5

?Ce

horizontal acceleration of EQ

6

?Fsn

minimum safety factor without EQ

7

?Fse

minimum safety factor with EQ

8

?Plane_no

no. of discontinuity plane of wedge

9

?ind_bot?

Index of horizontal angle of boltind_bot=0 for most economic, ind_bot<>0, then inputhorizontal angle of bolt

10

?did

dip direction of discontinuity plane

11

?dip

dip angle of discontinuity plane

12

?indplane

Index of plane,ndplane=1 for has this plane, indplane=0 no this plane

13

?Lg

length of wedge line segment, if unknown set it to 0

14

?Lxg

x component of wedge line segment, if unknown set it to 0

15

?Lyg

y component of wedge line segment, if unknown set it to 0

16

?Lzg

z component of wedge line segment, if unknown set it to 0

17

?L(A_X)

length of line on tension crack from vertex to nearest point, if unknown set it to 0

18

?L(B_X)

length of line on tension crack from vertex to farest point, if unknown set it to 0

19

?hwtpn

Water of point n ,n=6,11,12,9,8,7,14,15,10 etc.

 

(2)  Definition of variables name in spread sheet

item

variabls

description

1

abotgdid

dip direction of rock bolt

2

abotgdip

dip angle of rock bolt

3

csh1~csh2

cohesion on PL1 and PL2

4

dac

180/pi()

5

Eqf

coeff. of EQ

6

Fctgw

Factor of water force(0 or 1)

7

Fdnoeq1

driving force(excluding EQ force) in EQ worst condition

8

Fdnoeq2

driving force(excluding EQ force) along intersected line

9

Frnoeq1

resisting force(excluding EQ force) in EQ worst condition

10

Frnoeq2

resisting force(excluding EQ force) along intersected line

11

Fse

minimum Fs during EQ

12

Fsn

minimum Fs without EQ

13

hwpt1~hwpt16

water head for point 1~16

14

indbot

index of horizontal angle of bolt

15

L1f~L6f

final length of line1~6

16

L6tpt

length of line 6 while d=10 of PL4

17

L1use~L5use

actual length of line1~5

18

Mx1~Mx3

z component of vector M for sliding case1~3

19

Mxe1~Mxe3

x component of vector M for sliding case1~3 during EQ

20

My1~My3

y component of vector M for sliding case1~3

21

Mye1~Mye3

z component of vector M for sliding case1~3 during EQ

22

Mz1~Mz3

z component of vector M for sliding case1~3

23

Mze1~Mze3

z component of vector M for sliding case1~3 during EQ

24

n1dotr2

dot product of unit normal vector n1& n2

25

n2dotr1

dot product of unit normal vector n2 & unit position vector r1

25

phi~ph2

friction angle on PL1 & PL2

26

planeno

total number of discontinuity plane

27

Px1~Px3

x component of virtual vector P for sliding case1~3

28

Py1~Py3

y component of virtual vector P for sliding case1~3

29

Pz1~Py3

z component of virtual vector P for sliding case1~3

30

Qx1~Qx3

x component of virtual vector Q for sliding case1~3

31

Qy1~Qy3

y component of virtual vector Q for sliding case1~3

31

Qz1~Qy3

z component of virtual vector Q for sliding case1~3

32

rac

Pi()/180

33

St1~St3

sum of cohesion force for sliding cas 1 ~3

34

uix1~uix6

x component of unit vector of line segment 1~6

35

uiy1~uiy6

y component of unit vector of line segment 1~6

36

uiz1~uiz6

z component of unit vector of line segment 1~6

37

und1~und8

d value of ax+by+cz=d for plane 1~8

38

unx1~unx8

x component of unit normal  for plane 1~8

39

uny1~uny8

y component of unit normal  for plane 1~8

40

unz1~unz8

z component of unit normal  for plane 1~8

41

uix1,uiy1,uiz1

x,y,z component of unit vector of intersected line of PL1 & PL2

42

uwr

Unit weight of rock

43

uww

Unit weight of water

44

(ux1,uy1,uz1)

x,y,z component of unit vector of position vector of PL1

45

(ux2,uy2,uz2)

x,y,z component of unit vector of position vector of PL2

46

(xsl1,ysl1,zsl1)

x,y,z component of unit vector along sliding line for sliding case 1

47

(xsl2,ysl2,zsl2)

x,y,z component of unit vector along sliding line for sliding case 2

48

(xsl3,ysl1,zsl3)

x,y,z component of unit vector along sliding line for sliding case 3

49

xpt1~xpt16

x coord. of point 1~ 6

50

ypt1~ypt16

y coord. of point 1~ 6

51

zpt1~zpt16

z coord. of point 1~ 6

Figure E1.1 Wedge diagram

 

Table E1.1 Data input

 

ind-bot<>0 for input bolt did/dip

 

 

 

 

 

 

 

 

 

?uww

?uwr

?cs1

?phi1

?cs2

?phi2

?Ce

?Fsn

?Fse

?plane_no

?ind-bolt

 

0.0625

0.16

0.50

20.00

1.00

30.00

0.283

1.50

1.30

5

0

vector

indplane

?did

?dip

 

vector

?indplane

?did

?dip

 

 

 

1

1

105.00

45.00

 

5

1

165.0

70.00

 

 

 

2

1

235.00

70.00

 

6

0

180.0

75.00

 

 

 

3

1

195.00

13.00

 

7

0

230.0

85.00

 

 

 

4

1

185.00

65.00

 

8

0

100.0

73.00

 

 

 

 

Table E1.1 Data input(continue)

 

 

Lg

Lxg

Lyg

Lzg

 

 

 

 

 

 

 

1

0.00

0.00

0.00

0.00

 

 

 

 

 

 

 

2

0.00

0.00

0.00

0.00

 

 

 

 

 

 

 

3

0.00

0.00

0.00

0.00

 

 

 

 

 

 

 

4

0.00

0.00

0.00

100.00

 

 

 

 

 

 

 

5

0.00

0.00

0.00

0.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pl5

 

 

 

近端至中間點 

遠端至中間點

pl6

 

 

 

 

 

Line

PtA(near)

PtX(mid)

PtB(far)

?L(A-X)

?L(X-B)

Line

PtA(near)

PtX(mid)

PtB(far)

?L(A-X)

?L(X-B)

L1'

1

5

2

0.00

0.00

L1''

2

8

1

00.00

0.00

L2'

1

6

3

0.00

40.00

L4"

2

9

3

0.00

0.00

L3'

1

7

4

0.00

0.00

L5'

2

10

4

0.00

0.00

 

(3)Cood. Of wedge vertices:

    To compute vertices of rock wedge, e assume d=-10 , then modify by the ratio of given length and computed length. From PT1,PT3 we can compute PT6.Because triangle PT5,6,7 is a closed polygon, then we can compute PT6 and PT7 by vector operation.

     

E1.2 Cood. Of baseic wedge

pt1

a

b

c

d

b

c

a

d

c

a

b

d

 

 

pl1

0.1830

-0.6830

0.7071

0.0000

-0.6830

0.7071

0.1830

0.0000

0.7071

0.1830

-0.6830

0.0000

x

0.0000

pl2

0.5390

0.7698

0.3420

0.0000

0.7698

0.3420

0.5390

0.0000

0.3420

0.5390

0.7698

0.0000

y

0.0000

pl3

0.2008

0.0538

0.9781

0.0000

0.0538

0.9781

0.2008

0.0000

0.9781

0.2008

0.0538

0.0000

z

0.0000

pt2

a

b

c

d

b

c

a

d

c

a

b

d

 

 

pl1

0.1830

-0.6830

0.7071

0.00

-0.6830

0.7071

0.1830

0.0000

0.7071

0.1830

-0.6830

0.0000

x

-16.8356

pl2

0.5390

0.7698

0.3420

0.00

0.7698

0.3420

0.5390

0.0000

0.3420

0.5390

0.7698

0.0000

y

6.8936

pl4

0.9029

0.0790

0.4226

-10.00

0.0790

0.4226

0.9029

-10.0000

0.4226

0.9029

0.0790

-10.0000

z

11.0161

pt3

a

b

c

d

b

c

a

d

c

a

b

d

 

 

pl1

0.1830

-0.6830

0.7071

0.00

-0.6830

0.7071

0.1830

0.0000

0.7071

0.1830

-0.6830

0.0000

x

-1099

pl3

0.2008

0.0538

0.9781

0.00

0.0538

0.9781

0.2008

0.0000

0.9781

0.2008

0.0538

0.0000

y

-0.6399

pl4

0.9029

0.0790

0.4226

-10.00

0.0790

0.4226

0.9029

-10.0000

0.4226

0.9029

0.0790

-10.0000

z

2.5421

pt4

a

b

c

d

b

c

a

d

c

a

b

d

 

 

pl2

0.5390

0.7698

0.3420

0.00

0.7698

0.3420

0.5390

0.0000

0.3420

0.5390

0.7698

0.0000

x

-13.7993

pl3

0.2008

0.0538

0.9781

0.00

0.0538

0.9781

0.2008

0.0000

0.9781

0.2008

0.0538

0.0000

y

7.9898

pl4

0.9029

0.0790

0.4226

-10.00

0.0790

0.4226

0.9029

-10.0000

0.4226

0.9029

0.0790

-10.0000

z

2.1883

 

E1.2  Cood. Of baseic wedge(continue)

74

A

B

C

D

E

F

G

H

I

J

75

Line

Ltestl

fct

Lfinal

pt1

xcordf

ycordf

zcordf

plane

und1-4

76

L1

0.0470

11.8007

250.97

1

0.0000

0.0000

0.0000

1

0.00

77

L2

0.1602

11.8007

147.37

2

-198.6717

81.3500

129.9981

2

0.00

78

L3

0.1968

11.8007

179.92

3

-144.0850

-7.5512

29.9981

3

0.00

79

L4

11.8007

11.8007

144.51

4

-151.0406

94.2856

25.8237

4

-118.01

80

L5

0.5119

11.8007

115.28

 

 

 

 

5

-86.47

81

L6

 

 

102.1594

 

 

 

 

 

 

 

(4)Areas of wedge, volumes of wedge and water forces

 

    Area of wedge surface can be computed by vector cross product, and volume of wedges and water pressure force can get from scalar triple product. Table E1.3.a is the

Spread sheet to compute water force of PT5,6,7. Table E1.3.b is the spread sheet of formulas corresponding Table E1.3.a.

 

Table E1.3.a Water force at PT5,6,7

161

A

B

C

D

E

F

G

H

I

162

pt

5

6

11

tp1

tp2

tp3

v1-1

v2-1

163

x

-110.37

-104.98

-144.09

-100.50

-104.98

-144.09

-9.87

-4.47

164

y

45.19

-5.50

-7.55

8.37

-5.50

-7.55

36.82

-13.88

165

z

72.22

21.86

30.00

113.34

21.86

30.00

-38.12

-88.48

 

161

J

K

L

M

N

O

P

Q

R

162

v3-1

v1-2

v2-2

v3-2

v1-3

v2-3

v3-3

vol

25331.34

163

-43.58

0.00

-39.11

4.47

0.00

43.58

39.11

25331.34

 

164

-15.93

0.00

-2.05

13.88

0.00

15.93

2.05

0

 

165

-80.34

0.00

8.14

88.48

0.00

80.34

-8.14

0

 

 

Table E1.3.b Formulas of Table E 1.3.a

161

A

B

C

D

E

F

G

H

I

162

pt

5

6

11

tp1

tp2

tp3

v1-1

v2-1

163

x

=xpt5

=xpt6

=xpt11

=B163

+unx1

*hwpt5

=C163

+unx1

*hwpt6

=D163

+unx1

*hwpt11

=B163

-$E163

=C163

-$E163

164

y

=ypt5

=ypt6

=ypt11

=B164

+uny1

*hwpt5

=C164

+uny1

*hwpt6

=D164

+uny1

*hwpt11

=B164

-$E164

=C164

-$E164

165

z

=zpt5

=zpt6

=zpt11

=B165

+unz1

*hwpt5

=C165

+unz1

*hwpt6

=D165

+unz1

*hwpt11

=B165

-$E165

=C165

-$E165

161

J

K

L

M

N

O

P

Q

R

162

v3-1

v1-2

v2-2

v3-2

v1-3

v2-3

v3-3

vol

=(Q163

+Q164

+Q165)

163

=D163

-$E163

=$C163

-$F163

=$D163

-$F163

=$E163

-$F163

=$D163

-$G163

=$E163-

$G163

=$F163

-$G163

=ABS

(MDETERM

(H163:J165)

/6)

 

164

=D164

-$E164

=$C164

-$F164

=$D164

-$F164

=$E164

-$F164

=$D164

-$G164

=$E164

-$G164

=$F164

-$G164

=ABS

(MDETERM

(K163:M165)

/6)

 

165

=D165-

$E165

=$C165

-$F165

=$D165

-$F165

=$E165

-$F165

=$D165

-$G165

=$E165-

$G165

=$F165

-$G165

=ABS

(MDETERM

(N163:P165)

/6)

 

 

161

A

B

C

D

E

F

G

H

I

162

pt

5

6

11

tp1

tp2

tp3

v1-1

v2-1

163

x

=xpt5

=xpt6

=xpt11

=B163

+unx1

*hwpt5

=C163

+unx1

*hwpt6

=D163

+unx1

*hwpt11

=B163

-$E163

=C163

-$E163

164

y

=ypt5

=ypt6

=ypt11

=B164

+uny1

*hwpt5

=C164

+uny1

*hwpt6

=D164

+uny1

*hwpt11

=B164

-$E164

=C164

-$E164

165

z

=zpt5

=zpt6

=zpt11

=B165

+unz1

*hwpt5

=C165

+unz1

*hwpt6

=D165

+unz1

*hwpt11

=B165

-$E165

=C165

-$E165

 

(5)Plunge of minimum safety factor during EQ

 

The plunge of minimum safety factor’s computation, we use Newton iteration

method of non-linear system equation. Table E1.5a is the iteration of Newton

method, Table E1.5b is the formulas of Table E1.5.a. Generally, number of iteration should not great then 5.

Table E1.4a Driving and resisting force which excludes EQ force

 

B

C

D

E

F

G

H

303

N1

N2

ind1

ind2

ind3

mxe1

mye1

304

22557.1

13848.7

1

0

0

0.4491

0.1809

 

303

I

J

K

L

M

N

O

304

mze1

xsle1

ysle1

zsle1

ste1

Fd-noeq

Fr-noeq

 

0.5732

-0.7916

0.3241

0.5180

9213.6

14644.3

25416.3

 

Table E1.4b Formulas of Table E1.4a

 

I

J

K

L

M

N

O

303

mze1

xsle1

ysle1

zsle1

ste1

Fd-noeq

Fr-noeq

304

=D304*Mz1

+E304*MZ2

+F304*MZ3

=D304*xsl1

+E304*XSL2

+F304*XSL3

=D304*ysl1

+E304*YSL2

+F304*YSL3

=D304*zsl1

+E304*ZSL2

+F304*ZSL3

=D304

*ST1+

E304*ST2

+F304*ST3

=D258*xsle1

+ysle1*E258

+zsle1*F258

=M304+mxe1

*D258+mye1

*E258+mze1

*F258

 

Table E1.5.a Iteration of Newton method

 

A

B

C

D

E

306

K

AA(1)

AA(1)+360

AA(USE)

BB(USE)

307

1

2.7529

9.0361

2.7529

0.5445

308

 

EX

EY

EZ

D1AEX

309

 

-6333.6

2593.4

4144.3

-2593.4

310

 

D2AAEX

D2AAEY

D2AAEZ

D2BBEX

311

 

6333.6

-2593.4

0.0

6333.6

312

 

D2ABEM

D2ABEI

D2BBEM

D2BBEI

313

 

1399.0

0.0

0.0

-8001.0

314

 

F2B

F2

F4A

F4B

315

 

0.0

0.1

0.0

0.4

 

Table E1.5.a Iteration of Newton method (continue)

 

F

G

H

I

J

306

AA(deg)

BB(deg)

 

trend(eq)

plung(eq)

307

157.7324

31.1965

 

173.04

358.37

308

D1AEY

D1AEZ

D1BEX

D1BEY

D1BEZ

309

-6333.6

0.0000

3835.3

-1570.4

6844.0

310

D2BBEY

D2BBEZ

D1AEM

D1BEM

D1AEI

311

-2593.4

-4144.3

-2313.4

5361.5

0.0

312

TA

TB

FGA

FGB

F1A

313

25416.3

22645.3

-0.1

0.2

0.1

314

F4

TP1

YS1

YS2

AANS(I)

315

0.4

0.2

0.36

-0.65

3.11

 

 

 

 

 

 

 

Table E1.5.a Iteration of Newton method (continue)

 

K

L

M

N

O

306

 

 

 

 

 

307

-1.6271

 

 

 

 

308

D2ABEX

D2ABEY

D2ABEZ

aang(ans)

aang(ans)

309

1570.4

3835.3

0.0000

9999.00

999.00

310

D1BEI

D2AAEM

D2AAEI

 

 

311

0.0000

2375.5

-5854.4

 

 

312

F1B

F1

F2A

 

 

313

0.3

0.4

0.062

 

 

314

BANS(I)

Anga(deg)

Angb(deg)

ang1(del)

ang2(del)

315

6.17

178.38

353.77

20.65

13.55

 

Table E1.5.b Formulas of Table E1.5.a

 

A

B

C

D

E

306

K

AA(1)

AA(1)+360

AA(USE)

BB(USE)

307

1

=ATAN2

(xsle1,ysle1)

=B307+

ATAN(1)*8

=IF(B307<=0,

C307,B307)

=ASIN(zsle1)

308

 

EX

EY

EZ

D1AEX

309

 

=EQF*COS(D307)

*COS(E307)

=EQF*SIN(D307)

*COS(E307)

=EQF*SIN(E307)

=-EQF*SIN(D307)

*COS(E307)

310

 

D2AAEX

D2AAEY

D2AAEZ

D2BBEX

311

 

=-EQF*COS(D307)

*COS(E307)

=-EQF*SIN(D307)

*COS(E307)

0

=-EQF*COS(D307)

*COS(E307)

312

 

D2ABEM

D2ABEI

D2BBEM

D2BBEI

313

 

=K309*mxe1

+L309*mye1

+M309*mze1

=K309*xsle1

+L309*ysle1

+M309*zsle1

=E311*mxe1

+F311*mye1

+G311*mze1

=E311*xsle1

+F311*ysle1

+G311*zsle1

314

 

F2B

F2

F4A

F4B

315

 

=-I311/G313/G313*J311

+2*F313/G313/G313/G313

*J311*K311-F313/G313

/G313*C313

=M313+B315

=D313/G313-I311

/G313/G313*K311

=-I311/G313/G313

*K311+2*F313/G313/

G313/G313*K311*K311

-F313/G313/G313*E313

 

Table E1.5.b Formulas of Table E1.5.a (continue)

 

F

G

H

I

J

306

AA(deg)

BB(deg)

 

trend(eq)

plung(eq)

307

=D307*dac

=E307*dac

 

=MIN(N309,N320

N331,N342,N353)

=MIN(O309,O320,

O331,O342,O353)

308

D1AEY

D1AEZ

D1BEX

D1BEY

D1BEZ

309

=EQF*COS(D307)

*COS(E307)

0

=-EQF*COS(D307)

*SIN(E307)

=-EQF*SIN(D307)

*SIN(E307)

=EQF*COS(E307)

310

D2BBEY

D2BBEZ

D1AEM

D1BEM

D1AEI

311

=-EQF*SIN(D307)

*COS(E307)

=-EQF*SIN(E307)

=E309*mxe1

+F309*mye1

+G309*mze1

=H309*mxe1

+I309*mye1

+J309*mze1

=E309*xsle1

+F309*ysle1

+G309*zsle1

312

TA

TB

FGA

FGB

F1A

313

=Frnoeq1+B309

*mxe1+C309*mye1

+D309*mze1

=Fdnoeq1

+B309*xsle1

+C309*ysle1

+D309*zsle1

=H311/G313

-F313/G313

/G313*J311

=I311/G313

-F313/G313

/G313*K311

=L311/G313

-H311/G313

/G313*J311

314

F4

TP1

YS1

YS2

AANS(I)

315

=D315+E315

=L313*F315-C315*C315

=-(H313*F315

-I313*C315)/G315

=-(L313*I313

-C315*H313)/G315

=MOD(D307

+H315,3.14159*2)

(1)       

Table E1.5. b Formulas of Table E1.5.a (continue)

 

K

L

M

N

O

 

=J307-360

 

 

 

 

308

D2ABEX

D2ABEY

D2ABEZ

aang(ans)

aang(ans)

309

=EQF*SIN(D307)

*SIN(E307)

=-EQF*COS(D307)

*SIN(E307)

0

=IF(N315<=0.05

,L315,9999)

=IF(N315<=0.05

,M315,999)

310

D1BEI

D2AAEM

D2AAEI

 

 

311

=H309*xsle1

+I309*ysle1

+J309*zsle1

=B311*mxe1

+C311*mye1

+D311*mze1

=B311*xsle1

+C311*ysle1

+D311*zsle1

 

 

312

F1B

F1

F2A

 

 

313

=-H311/G313/G313

*J311+2*F313/G313

/G313/G313*J311*J311

-F313/G313/G313*M311

=J313+K313

=B313/G313

-H311

/G313/G313

*K311

 

 

314

BANS(I)

Anga(deg)

Angb(deg)

ang1(del)

ang2(del)

315

=MOD(E307

+I315,3.14159*2)

=J315*dac

=K315*dac

=ABS(F307-L315)

=ABS(N315-G307)

 

(6)Resultant force of rock wedge

(2)           

(3)       Combine the wedge gravity force, water forces(PL1,PL2,PL5,……),EQ force according to different condition. Table Table E1.6 show the resultant force of rock wedge .

(4)      Table E1.6 Result forces

 

B

C

D

E

F

G

H

I

J

 

K

248

 

Force

xd

yd

zd

Fx

Fy

Fz

 

 

 

249

weight

28272.2

0.0000

0.0000

1.0000

0.0

0.0

28272.2

 

 

 

250

wtaer f1

6249.8

-0.1830

0.6830

-0.7071

-1143.8

4268.7

-4419.3

 

 

 

251

wtaer f2

7219.1

-0.5390

-0.7698

-0.3420

-3891.0

-5556.9

-2469.1

 

 

 

252

wtaer f5

2073.8

-0.9077

0.2432

-0.3420

-1882.3

504.4

-709.3

did

dip

 

253

E.q(1)

8001.0

-0.9922

0.1212

-0.0284

-7938.8

969.7

-227.2

173.04

-1.6271

 intersection of PL1&2

254

E.q(2)

8001.0

-0.7916

0.3241

0.5180

-6333.6

2593.4

4144.3

157.73

31.1965

 

255

E.q(3)

8001.0

-0.9669

0.0229

-0.2540

-7736.4

183.1

-2032.6

178.64

-14.7165

intersection of PL1&2

256

E.q(4)

8001.0

-0.7916

0.3241

0.5180

-6333.6

2593.4

4144.3

157.73

31.1965

 

        

(7)Resolution of external force

 

Table 1.7.a is th vector P,Q & vector M,

Table 1.7.a Vector P,Q & vector M

242

A

B

C

D

E

F

G

243

case

 

 

tpt1

Px

Py

Pz

244

1

N1>=0

N2>=0

0.5090

0.2929

-0.5596

0.7979

245

2

N1>=0

N2<0

 

0.1830

-0.6830

0.7071

246

3

N1<0

N2>0

 

0.0000

0.0000

0.0000

 

Table 1.7.aVector P,Q & vector M(continue)

242

H

I

J

K

L

M

243

Qx

Qy

Qz

Mx

My

Mz

244

0.5933

0.6661

0.4898

0.4491

0.1809

0.5732

245

0.0000

0.0000

0.0000

0.0666

-0.2486

0.2574

246

0.5390

0.7698

0.3420

0.3112

0.4444

0.1975

(5)       

Table 1.7.a Vector P,Q & vector M(continue)

242

N

O

P

Q

R

243

ST

xsl

ysl

zsl

I_ind

244

9213.6

-0.7916

0.3241

0.5180

1

245

2782.5

-0.1830

0.6830

0.7071

2

246

6428.1

-0.1962

-0.2802

0.9397

3

 

Table 1.7.b Formulas of Table 1.7.a

242

A

B

C

D

E

F

G

243

case

 

 

tpt1

Px

Py

Pz

244

1

N1>=0

N2>=0

=unx1*uny2

-unx2*uny1

=((1-uix1*uix1)*uny2

+uix1*uiy1*unx2

)/D244

=(-(1-uiy1*uiy1)*unx2-

uix1*uiy1*uny2)

/D244

=-(uix1*uiz1*uny2

-uiz1*uiy1*unx2)

/D244

245

2

N1>=0

N2<0

 

=unx1

=uny1

=unz1

246

3

N1<0

N2>0

 

0

0

0

(6)       

Table 1.7.b Formulas of Table 1.7.a (continue)

242

H

I

J

K

L

M

243

Qx

Qy

Qz

Mx

My

Mz

244

=-((1-uix1*uix1)

*uny1+uix1*uiy1

*unx1)/D244

=((1-uiy1*uiy1)

*unx1+uix1*uiy1

*uny1)/D244

=(uix1*uiz1

*uny1-uiz1*uiy1

*unx1)/D244

=E244

*TAN(phi1*rac)

+H244

*TAN(phi2*rac)

=F244

*TAN(phi1*rac)

+I244

*TAN(phi2*rac)

=G244

*TAN(phi1*rac)

+J244

*TAN(phi2*rac)

245

0

0

0

=E245

*TAN(phi1*rac)

+H245

*TAN(phi2*rac)

=F245

*TAN(phi1*rac)

+I245

*TAN(phi2*rac)

=G245

*TAN(phi1*rac)

+J245

*TAN(phi2*rac)

246

=unx2

=uny2

=unz2

=E246

*TAN(phi1*rac)

+H246

*TAN(phi2*rac)

=F246

*TAN(phi1*rac)

+I246

*TAN(phi2*rac)

=G246

*TAN(phi1*rac)

+J246

*TAN(phi2*rac)

(7)       

Table 1.7.b Formulas of Table 1.7.a (continue)

242

N

O

P

Q

R

243

ST

xsl

ysl

zsl

I_ind

244

=csh1*$B$242+csh2*$C$242

=uix1

=uiy1

=uiz1

1

245

=csh1*$B$242

=ux1

=uy1

=uz1

2

246

=csh2*$C$242

=ux2

=uy2

=uz2

3

(8)       

(9)       TableE1.8.a Normal forces on Pl1 & pl2

 

B

C

D

E

F

G

H

257 

csae

load comb.

Fxsum

Fysum

Fzsum

N1I

N2I

258

1

no( Gw&Eq)

0.00

0.00

28272.20

22557.12

13848.68

259 

2

Gw(no Eq)

-6917.11

-783.88

20674.55

14907.80

5501.38

260 

3

Eq(no GW)

-7938.80

969.74

28045.01

19507.74

9673.60

261 

3p

Eq(no GW)

-6333.65

2593.43

32416.53

22557.12

13848.68

262 

4

Gw&Eq

-14653.50

-600.82

18642.00

10917.53

38.06

263

4p

Gw&Eq

-13250.8

1809.6

24818.9

14907.80

5501.38

(10)  

(11) Table E1.8.b Formulas of TableE1.8a

 

B

C

D

E

F

G

H

257 

csae

load comb.

Fxsum

Fysum

Fzsum

N1I

N2I

258

1

no( Gw&Eq)

=G249

=H249

=I249

=D258*$E$244

+E258*$F$244

+F258*$G$244

=D258*$H$244

+E258*$I$244

+F258*$J$244

259 

2

Gw(no Eq)

=SUM(G249:G252)

=SUM(H249:H252)

=SUM(I249:I252)

=D259*$E$244

+E259*$F$244

+F259*$G$244

=D259*$H$244

+E259*$I$244

+F259*$J$244

260 

3

Eq(no GW)

=G249+G253

=H249+H253

=I249+I253

=D260*$E$244

+E260*$F$244

+F260*$G$244

=D260*$H$244

+E260*$I$244

+F260*$J$244

261 

3p

Eq(no GW)

=G249+G254

=H249+H254

=I249+I254

=D261*$E$244

+E261*$F$244

+F261*$G$244

=D261*$H$244

+E261*$I$244

+F261*$J$244

262 

4

Gw&Eq

=SUM(G249

:G252,G255)

=SUM(H249

:H252,H255)

=SUM(I249

:I252,I255)

=D262*$E$244

+E262*$F$244

+F262*$G$244

=D262*$H$244

+E262*$I$244

+F262*$J$244

263

4p

Gw&Eq

=SUM(G249

:G252,G256)

=SUM(H249

:H252,H256)

=SUM(I249

:I252,I256)

=D263*$E$244

+E263*$F$244

+F263*$G$244

=D263*$H$244

+E263*$I$244

+F263*$J$244

 

(12) (8) Safety factors

(13)  

(14)   To compute the safety factors, we need judge the sliding condition, Is it sliding along intersected line of Pl1 & P2 (case 1), or sliding on dip of PL1(case 2) or Pl2(cas2 3). IF N1I>0. and N2I>0., then Isl=1, if N1I>0. and N2I<=0. then Isl=2, if N1I<=0. and N2I>0. then Isl=3,If N1I<=0. and N2I,=00. then the wedge float.

(15)  

(16)  

(17)   Table E1.9.a Safety factors

272

A

B

C

D

E

F

273

case

load comb.

Isl

Fd

Fr

Fs

274

1

no( Gw&Eq)

1

14644.29

25416.29

1.7356

275

2

Gw(no Eq)

1

15930.42

17813.85

1.1182

276

3

Eq(no GW)

1

21125.33

21895.92

1.0365

277

3p

Eq(no GW)

1

22645.32

25416.29

1.1224

278

4

Gw&Eq

1

21061.11

13206.26

0.6270

279

4p

Gw&Eq

1

23931.46

17813.85

0.7443

(18)  

(19)         Table E1.9.bFormula of TableE1.9.a

272

A

B

C

D

E

F

273

case

load comb.

Isl

Fd

Fr

Fs

274

1

no( Gw&Eq)

=N258

=D258*Q265

+E258*R265

+F258*S265

=P265+D258*M265

+E258*N265

+F258*O265

=E274/D274

275

2

Gw(no Eq)

=N259

=D259*Q266

+E259*R266

+F259*S266

=P266+D259*M266

+E259*N266

+F259*O266

=E275/D275

276

3

Eq(no GW)

=N260

=D260*Q267

+E260*R267

+F260*S267

=P267+D260*M267

+E260*N267

+F260*O267

=E276/D276

277

3p

Eq(no GW)

=N261

=D261*Q268

+E261*R268

+F261*S268

=P268+D261*M268

+E261*N268

+F261*O268

=E277/D277

278

4

Gw&Eq

=N262

=D262*Q269

+E262*R269

+F262*S269

=P269+D262*M269

+E262*N269

+F262*O269

=E278/D278

279

4p

Gw&Eq

=N263

=D263*Q270

+E263*R270

+F263*S270

=P270+D263*M270

+E263*N270

+F263*O270

=E279/D279

(20)  

(21) (9) Rock bolt

(22)  

(23)   When safety factors are lest than the minimum required safety factors,we can use rock bot to increase the safety factors. Table E1.10.a show the required rock bolt

(24)   forces and plunges for case 1,2,3,4.

(25)    

(26)  

(27) Table E1.10.a Rock bolt forces

 

F

G

H

I

J

K

L

272

N1>=0,

N2>=0

 (case1)

 

 

 

 

273

Fs

trend(bolt)

trend(bolt)

plunge(bolt)

bdotM

idotm

Boltreq

274

1.7356

-13.57

349.43

-6.98

0.3357

-0.8943

0.0

275

1.1182

-13.57

349.43

-6.98

0.3357

-0.8943

3626.8

276

1.0365

-9.24

350.76

-3.83

0.3751

-0.8661

3708.9

277

1.1224

-9.24

350.76

-3.83

0.3751

-0.8661

2680.0

278

0.6270

-9.24

350.76

-3.83

0.3751

-0.8661

9442.5

279

0.7443

-9.24

350.76

-3.83

0.3751

-0.8661

8859.5

(28)          

(29) Table E1.10.a Rock bolt forces (continue)

 

M

N

O

P

Q

R

272

N1>=0,

N2<0

(case2)

 

 

 

273

trend(bolt)

trend(bolt)

plunge(bolt)

bdotM

idotm

Boltreq

274

-75.00

285.00

-31.4

0.0858

-0.9718

0.0

275

-75.00

285.00

-31.4

0.0858

-0.9718

3940.8

276

-75.00

285.00

-29.4

0.0981

-0.9630

4123.7

277

-75.00

285.00

-29.4

0.0981

-0.9630

2979.7

278

-75.00

285.00

-29.4

0.0981

-0.9630

10498.7

279

4p

-75.00

285.00

-29.4

0.0981

-0.9630

 

(30) Table E1.10.a Rock bolt forces (continue)

 

S

 T

U

V

W

X

272

N1<0,

N2>=0

(case3)

 

 

 

273

trend(bolt)

trend(bolt)

plunge(bolt)

bdotM

idotm

Boltreq

274

55.00

55.00

-48.95

0.2074

-0.9333

0.0

275

55.00

55.00

-48.95

0.2074

-0.9333

3784.5

276

55.00

55.00

-46.05

0.2343

-0.9139

3913.7

277

55.00

55.00

-46.05

0.2343

-0.9139

2828.0

278

55.00

55.00

-46.05

0.2343

-0.9139

9964.0

279

55.00

55.00

-46.05

0.2343

-0.9139

9348.8

 

(31) Table E1.10.a Rock bolt forces (continue)

 

Y

Z

AA

AB

AC

AD

272

N1<0,

N2<0

(case4)

 

 

 

273

trend(bolt)

trend(bolt)

plunge(bolt)

bdotM

idotm

Boltreq

274

-13.57

349.43

-6.98

0.3357

-0.8943

0.0

275

-13.57

349.43

-6.98

0.3357

-0.8943

3626.8

276

-9.24

350.76

-3.83

0.3751

-0.8661

3708.9

277

-9.24

350.76

-3.83

0.3751

-0.8661

2680.0

278

-9.24

350.76

-3.83

0.3751

-0.8661

9442.5

279

-9.24

350.76

-3.83

0.3751

-0.8661

8859.5

(32)          

(33)           Table E1.10.b Formula of Table E1.10.a

 

F

G

H

I

J

K

L

273

Fs

trend(bolt)

trend(bolt)

plunge(bolt)

bdotM

idotm

Boltreq

274

=E274

/D274

=IF(indbolt=0,

ATAN(

(My1-fsn*ysl1)

/(Mx1-fsn*xsl1)

)*dac

,abotgdid)

=IF(G274<0,

G274+360

,G274)

=IF(indbolt=0,

ATAN(

(Mz1-fsn*zsl1)

/(COS(H274*rac)*

(Mx1-fsn*xsl1)

+SIN(H274*rac)

*(My1-fsn*ysl1))

)*dac

,abotgdip)

=Mx1*

COS(H274*rac)

*COS(I274*rac)

+My1

*SIN(H274*rac)

*COS(I274*rac)

+Mz1*SIN(I274*rac)

=xsl1*

COS(H274*rac)

*COS(I274*rac)

+ysl1

*SIN(H274*rac)

*COS(I274*rac)

+zsl1

*SIN(I274*rac)

=IF(F274>=fsn

,0,(fsn*D274-E274)

/(J274-fsn*K274))

275

=E275

/D275

=IF(indbolt=0,

ATAN(

(My1-fsn*ysl1)

/(Mx1-fsn*xsl1)

)*dac

,abotgdid)

=IF(G275<0,

G275+360

,G275)

=IF(indbolt=0

,ATAN(

(Mz1-fsn*zsl1)

/(COS(H275*rac)

*(Mx1-fsn*xsl1)

+SIN(H275*rac)

*(My1-fsn*ysl1))

)*dac

,abotgdip)

=Mx1*

COS(H275*rac)

*COS(I275*rac)

+My1

*SIN(H275*rac)

*COS(I275*rac)

+Mz1

*SIN(I275*rac)

=xsl1*

COS(H275*rac)

*COS(I275*rac)

+ysl1

*SIN(H275*rac)

*COS(I275*rac)

+zsl1

*SIN(I275*rac)

=IF(F275>=fsn

,0,(fsn*D275-E275)

/(J275-fsn*K275))

276

=E276

/D276

=IF(indbolt=0,

ATAN(

(My1-fse*ysl1)

/(Mx1-fse*xsl1)

)*dac

,abotgdid)

=IF(G276<0,

G276+360

,G276)

=IF(indbolt=0

,ATAN(

(Mz1-fse*zsl1)

/(COS(H276*rac)

*(Mx1-fse*xsl1)

+SIN(H276*rac)

*(My1-fse*ysl1))

)*dac

,abotgdip)

=Mx1*

COS(H276*rac)

*COS(I276*rac)

+My1

*SIN(H276*rac)

*COS(I276*rac)

+Mz1

*SIN(I276*rac)

=xsl1*

COS(H276*rac)

*COS(I276*rac)

+ysl1

*SIN(H276*rac)

*COS(I276*rac)

+zsl1

*SIN(I276*rac)

=IF(F276>=fse,

0,(fse*D276-E276)

/(J276-fse*K276))

277

=E277

/D277

=IF(indbolt=0,

ATAN(

(My1-fse*ysl1)

/(Mx1-fse*xsl1)

)*dac

,abotgdid)

=IF(G277<0,

G277+360

,G277)

=IF(indbolt=0,

ATAN(

(Mz1-fse*zsl1)

/(COS(H277*rac)

*(Mx1-fse*xsl1)

+SIN(H277*rac)

*(My1-fse*ysl1))

)*dac

,abotgdip)

=Mx1

*COS(H277*rac)

*COS(I277*rac)

+My1

*SIN(H277*rac)

*COS(I277*rac)

+Mz1

*SIN(I277*rac)

=xsl1*

COS(H277*rac)

*COS(I277*rac)

+ysl1

*SIN(H277*rac)

*COS(I277*rac)

+zsl1

*SIN(I277*rac)

=IF(F277>=

fse,0,

(fse*D277-E277)

/(J277-fse*K277))

278

=E278

/D278

=IF(indbolt=0

,ATAN(

(My1-fse*ysl1)

/(Mx1-fse*xsl1)

)*dac

,abotgdid)

=IF(G278<0,

G278+360

,G278)

=IF(indbolt=0,

ATAN(

(Mz1-fse*zsl1)

/(COS(H278*rac)

*(Mx1-fse*xsl1)

+SIN(H278*rac)

*(My1-fse*ysl1))

)*dac

,abotgdip)

=Mx1*

COS(H278*rac)

*COS(I278*rac

+My1

*SIN(H278*rac)

*COS(I278*rac)

+Mz1

*SIN(I278*rac)

=xsl1*

COS(H278*rac)

*COS(I278*rac)

+ysl1

*SIN(H278*rac)

*COS(I278*rac)

+zsl1

*SIN(I278*rac)

=IF(F278>=

fse,0,

(fse*D278-E278)

/(J278-fse*K278))

279

=E279

/D279

=IF(indbolt=0,

ATAN(

(My1-fse*ysl1)

/(Mx1-fse*xsl1)

)*dac

,abotgdid)

=IF(G279<0,

G279+360

,G279)

=IF(indbolt=0,

ATAN(

(Mz1-fse*zsl1)

/(COS(H279*rac)

*(Mx1-fse*xsl1)

+SIN(H279*rac)

*(My1-fse*ysl1))

)*dac

,abotgdip)

=Mx1

*COS(H279*rac)

*COS(I279*rac)

+My1

*SIN(H279*rac)

*COS(I279*rac)

+Mz1

*SIN(I279*rac)

=xsl1*

COS(H279*rac)

*COS(I279*rac

+ysl1

*SIN(H279*rac)

*COS(I279*rac)

+zsl1

*SIN(I279*rac)

=IF(F279>=

fse,0,

(fse*D279-E279)

/(J279-fse*K279))

(34)           

(35)           Table E1.10.b Formula of TableE1.10.a (continue)

 

M

N

O

P

Q

R

272

N1>=0,

N2<0

(case2) 

 

 

 

273

trend(bolt)

trend(bolt)

plunge(bolt)

bdotM

idotm

Boltreq

274

=IF(indbolt=0,ATAN(

(MY2-fsn*YSL2)

/(MX2-fsn*XSL2)

)*dac,abotgdid)

=IF(M274<0,

M274+360

,M274)

=IF(indbolt=0,ATAN(

(MZ2-fsn*ZSL2)

/(COS(N274*rac)

*(MX2-fsn*XSL2)

+SIN(N274*rac)

*(MY2-fsn*YSL2)

))*dac,abotgdip)

=MX2

*COS(N274*rac)

*COS(O274*rac)

+MY2

*SIN(N274*rac)

*COS(O274*rac)

+MZ2

*SIN(O274*rac)

=XSL2

*COS(N274*rac)

*COS(O274*rac)

+YSL2

*SIN(N274*rac)

*COS(O274*rac)

+ZSL2

*SIN(O274*rac)

=IF(F274

>=fsn,0,

(fsn*D274-E274)

/(P274-fsn*Q274))

275

=IF(indbolt=0,ATAN(

(MY2-fsn*YSL2)

/(MX2-fsn*XSL2)

)*dac,abotgdid)

=IF(M275<0,

M275+360

,M275)

=IF(indbolt=0,ATAN(

(MZ2-fsn*ZSL2)/

(COS(N275*rac)

*(MX2-fsn*XSL2)

+SIN(N275*rac)

*(MY2-fsn*YSL2))

)*dac,abotgdip)

=MX2

*COS(N275*rac)

*COS(O275*rac)

+MY2

*SIN(N275*rac)

OS(O275*rac)

+MZ2

*SIN(O275*rac)

=XSL2

*COS(N275*rac)*

COS(O275*rac)

+YSL2

*SIN(N275*rac)

*COS(O275*rac)

+ZSL2

*SIN(O275*rac)

=IF(F275>=

fsn,0,

(fsn*D275-E275)

/(P275-fsn*Q275))

276

=IF(indbolt=0,ATAN(

(MY2-fse*YSL2)

/(MX2-fse*XSL2)

)*dac,abotgdid)

=IF(M276<0,

M276+360

,M276)

=IF(indbolt=0,ATAN(

(MZ2-fse*ZSL2)

/(COS(N276*rac)

*(MX2-fse*XSL2)

+SIN(N276*rac

)*(MY2-fse*YSL2))

)*dac,abotgdip)

=MX2

*COS(N276*rac)

*COS(O276*rac)

+MY2

*SIN(N276*rac)

*COS(O276*rac)

+MZ2

*SIN(O276*rac)

=XSL2

*COS(N276*rac)

*COS(O276*rac)

+YSL2

*SIN(N276*rac)

*COS(O276*rac)

+ZSL2

*SIN(O276*rac)

=IF(F276>=fse,0,

(fse*D276-E276)

/(P276-fse*Q276))

277

=IF(indbolt=0,ATAN(

(MY2-fse*YSL2)

/(MX2-fse*XSL2

))*dac,abotgdid)

=IF(M277<0,

M277+360

,M277)

=IF(indbolt=0,ATAN(

(MZ2-fse*ZSL2)

/(COS(N277*rac)

*(MX2-fse*XSL2)

+SIN(N277*rac)

*(MY2-fse*YSL2))

)*dac,abotgdip)

=MX2*

COS(N277*rac)

*COS(O277*rac)

+MY2

*SIN(N277*rac)

*COS(O277*rac)

+MZ2

*SIN(O277*rac)

=XSL2

*COS(N277*rac)

*COS(O277*rac)

+YSL2

*SIN(N277*rac)

*COS(O277*rac)

+ZSL2

*SIN(O277*rac)

=IF(F277>=fse,0,

(fse*D277-E277)/

(P277-fse*Q277))

278

=IF(indbolt=0,ATAN(

(MY2-fse*YSL2)

/(MX2-fse*XSL2))

*dac,abotgdid)

=IF(M278<0,

M278+360

,M278)

=IF(indbolt=0,ATAN(

(MZ2-fse*ZSL2)

/(COS(N278*rac)

*(MX2-fse*XSL2)

+SIN(N278*rac)

*(MY2-fse*YSL2))

)*dac,abotgdip)

=MX2*

COS(N278*rac)

*COS(O278*rac)

+MY2

*SIN(N278*rac)

*COS(O278*rac)

+MZ2

*SIN(O278*rac)

=XSL2

*COS(N278*rac)

*COS(O278*rac)

+YSL2

*SIN(N278*rac)

*COS(O278*rac)

+ZSL2

*SIN(O278*rac)

=IF(F278>=fse,0,

(fse*D278-E278)

/(P278-fse*Q278))

(36)    279

=IF(indbolt=0,ATAN(

(MY2-fse*YSL2)

/(MX2-fse*XSL2)

)*dac,abotgdid)

=IF(M279<0,

M279+360

,M279)

=IF(indbolt=0,ATAN(

(MZ2-fse*ZSL2)

/(COS(N279*rac)

*(MX2-fse*XSL2)

+SIN(N279*rac)

*(MY2-fse*YSL2))

)*dac,abotgdip)

=MX2*

COS(N279*rac)

*COS(O279*rac)

+MY2*

SIN(N279*rac)

*COS(O279*rac)

+MZ2*

SIN(O279*rac)

=XSL2

*COS(N279*rac)

*COS(O279*rac)

+YSL2

*SIN(N279*rac)

*COS(O279*rac)

+ZSL2

*SIN(O279*rac)

=IF(F279>=fse,0,

(fse*D279-E279)

/(P279-fse*Q279))

(37)  

(38) (10) Plane views of plane xy, y(-z), x(-z)

(39)   The charts of rock wedge are plotted by Excel x-y scatter chart method.

(40)    

(41)         E1.11

 

y

x

-z

y

-z

x

pt1

0.000

0.000

0.000

0.000

0.000

0.0000

pt2

81.350

-198.672

-129.998

81.350

-129.998

-198.6717

pt1

0.000

0.000

0.000

0.000

0.000

0.0000

pt3

-7.551

-144.085

-29.998

-7.551

-29.998

-144.0850

pt2

81.350

-198.672

-129.998

81.350

-129.998

-198.6717

pt4

94.286

-151.041

-25.824

94.286

-25.824

-151.0406

pt1

0.000

0.000

0.000

0.000

0.000

0.0000

pt5

45.193

-110.370

-72.219

45.193

-72.219

-110.3699

pt6

-5.502

-104.976

-21.856

-5.502

-21.856

-104.9762

pt7

53.924

-86.383

-14.769

53.924

-14.769

-86.3829

pt5

45.193

-113.370

-72.219

45.193

-72.219

-113.3699

pt8

81.350

-198.672

-129.998

81.350

-129.998

-198.6717

pt9

81.350

-198.672

-129.998

81.350

-129.998

-198.6717

pt10

81.350

-198.672

-129.998

81.350

-129.998

-198.6717

pt8

81.350

-198.672

-129.998

81.350

-129.998

-198.6717

pt2

81.350

-198.672

-129.998

81.350

-129.998

-198.6717

pt12

-7.551

-144.085

-29.998

-7.551

-29.998

-144.0850

pt11

-7.551

-144.085

-29.998

-7.551

-29.998

-144.0850

pt13

-7.551

-144.085

-29.998

-7.551

-29.998

-144.0850

pt12

-7.551

-144.085

-29.998

-7.551

-29.998

-144.0850

pt13

-7.551

-144.085

-29.998

-7.551

-29.998

-144.0850

pt3

-7.551

-144.085

-29.998

-7.551

-29.998

-144.0850

pt16

94.286

-151.041

-25.824

94.286

-25.824

-151.0406

pt14

94.286

-151.041

-25.824

94.286

-25.824

-151.0406

pt15

94.286

-151.041

-25.824

94.286

-25.824

-151.0406

pt16

94.286

-151.041

-25.824

94.286

-25.824

-151.0406

pt4

94.286

-151.041

-25.824

94.286

-25.824

-151.0406

(42)                 

(43)  

(44) Figure E1.2.a  xy Plane view

(45)

(46) Figure E1.2.b  y(-z) plane view

(47)

(48) FigureE1.2.c  x(-z) plane view

(49)    

(50) (11) Spread sheets

(51)  

(52)   Hereafter are all the spread sheets to be used in the stability analysis of rock wedge failure developed by the Arthur.

(53)

(54)

(55)

(56)

(57)

(58) Figure E1.3

Name(您的大名)
E_MAIL(您的電子信箱)
Comment or Suggestion(您想反應的狀況,建議,或諮詢事項)
首頁


 

首頁 | Rock wedge failure | 開挖地盤穩定分析 | 地下岩層開挖定分析 | 節理隧道穩定分析 | 貓纜T18塔柱基礎 | Excel_VBA_平面方程式在工程上應用 | Pole density diagram | Equal Area/Angle Projection | 順向坡 | Rock plane failure | 土層破壞強度回算法(Back analysis) | Rock wedge failure by Excel

上次修改此網站的日期: 2018年12月02日